
DNA Hypernetworks for Information Storage

and Retrieval

Byoung-Tak Zhang and Joo-Kyung Kim

Biointelligence Laboratory, School of Computer Science and Engineering
Seoul National University, Seoul 151-742, Korea

{btzhang, jkkim}@bi.snu.ac.kr
http://bi.snu.ac.kr/

Abstract. Content-addressability is a fundamental feature of human
memory underlying many associative information retrieval tasks. In con-
trast to location-based memory devices, content-addressable memories
require complex interactions between memory elements, which makes
conventional computation paradigms difficult. Here we present a molecu-
lar computational model of content-addressable information storage and
retrieval which makes use of the massive interaction capability of DNA
molecules in a reaction chamber. This model is based on the “hypernet-
work” architecture which is an undirected hypergraph of weighted edges.
We describe the theoretical basis of the hypernetwork model of associa-
tive memory and its realization in DNA-based computing. A molecular
algorithm is derived for automatic storage of data into the hypernetwork,
and its performance is examined on an image data set. In particular, we
study the effect of the hyperedge cardinality and error tolerance on the
associative recall performance. Our simulation results demonstrate that
short DNA strands in a vast number can be effective in some pattern
information processing tasks whose implementation is within reach of
current DNA nanotechnology.

1 Introduction

Content-addressable memories or associative memories are storage devices which
return stored contents from partial contents. These are contrasted to typical
location-based storage devices where addresses are to be provided rather than
contents. Content-addressable memories are useful in search intensive applica-
tions such as information retrieval, data compression, and database search [9].
It has long been known that human memory is based on content-addressing [8].

The property of massive parallelism along with associative search capability
of DNA computing can be very useful in realizing content-addressable memory.
This has been pointed out by several researchers in DNA computing community
[1,10] and there are some experimental works going on in this line of research, for
example [3] and [5]. However, there is lack of theoretical studies on developing
systematic models of associative memory based on molecular computing or DNA
nanotechnology.

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 298–307, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

DNA Hypernetworks for Information Storage and Retrieval 299

Here we propose a graphical model of associative memory, called hypernet-
works, which is naturally implemented as a library of interacting DNA nanos-
tructures. A hypernetwork is a weighted hypergraph, i.e., graphs having “hyper-
edges”. Thus, a hypergraph can have edges connecting three or more vertices
while in an ordinary graph the edges can connect maximum two vertices. As we
shall see, the use of these hyperedges allows for additional degrees of freedom in
representing memory elements in a network representation while preserving the
mathematical tools provided by the graph theory.

The purpose of this paper is to introduce the hypernetwork model of associative
memory from a theoretical point of view, and study its essential properties such as
the tolerance of associative recall against errors in input and/or chemical reaction.
We report on simulation results on pattern completion tasks where the corrupted,
input images are to be reconstructed into the original or clean patterns.

The paper is organized as follows. Section 2 introduces the hypernetwork
model of data storage. Section 3 presents a method for encoding the hypernet-
works in DNA molecules. Section 4 describes a method for automatic storage of
patterns on the hypernetwork along with its theoretical background. Section 5
shows the simulation results on the hand-written image data set. Section 6 draws
conclusions.

2 The Hypernetwork Model

A hypergraph is an undirected graph G whose edges connect a non-null number
of vertices [2], i.e. G = (V, E), where V = {v1, v2, ..., vn}, E = {E1, E2, ..., Em},
and Ei = {vi1, vi2, ..., vik}. Ei is called hyperedges. Mathematically, Ei is a
set and its cardinality is k ≥ 1, i.e., the hyperedges can connect more than two
vertices while in ordinary graphs the edges connect up to two vertices, i.e., k ≤ 2.
A hyperedge of cardinality k will be referred to as a k-hyperedge.

Figure 1 shows a hypergraph consisting of seven vertices V = {v1, v2, ..., v7}
and five hyperedges E = {E1, E2, E3, E4, E5}. A hypergraph can be represented
as an incidence matrix. The incidence matrix of a hypergraph G = (V, E) is a
matrix ((ai

j)) with m rows that represent the hyperedges of G and n columns
that represent the vertices of G, such that ai

j = 1 if vj ∈ Ei and ai
j = 0 if vj /∈ Ei.

Each (0, 1)-matrix is the incidence matrix of a hypergraph if no row or column
contains only zeros. Figure 1 also shows the incidence matrix corresponding to
the hypergraph.

We now generalize the hypergraph into hypernetworks by assigning the weight
values to the hyperedges. Formally, we define a hypernetwork as a triple H =
(V, E, W), where

V = {v1, v2, ..., vn} (1)
E = {E1, E2, ..., Em} (2)
W = {w1, w2, ..., wm}, (3)

where Ei = {vi1, vi2, ..., vim}. An m-hypernetwork consists of a set V of vertices,
a subset E of V [m], and a set W of hyperedge weights, i.e. H = (V, E, W), where

300 B.-T. Zhang and J.-K. Kim

v5v5

v1v1

v3v3

v7v7

v2v2

v6v6

v4v4

G = (V, E)
V = {v1, v2, v3, …, v7}
E = {E1, E2, E3, E4, E5}
E1 = {v1, v3, v4}
E2 = {v1, v4}
E3 = {v2, v3, v6}
E4 = {v3, v4, v6, v7}
E5 = {v4, v5, v7}

E1

E4

E5

E2

E3

111E5

1

v7

1

1

v6v5v4v3v2v1

11E4

11E3

11E2

111E1

Incidence Matrix Hypergraph

Hyperedge of cardinality 3

Fig. 1. An example hypergraph consisting of seven vertices and five hyperedges of
variable cardinality. The hypernetwork can be represented a matrix, called an inci-
dence matrix, of m rows of hyperedges and n columns of vertices.

E = V [m] is a set of subsets of V whose elements have precisely m members.
A hypernetwork H is said to be k-uniform if every edge Ei in E has cardinality
k. A hypernetwork H is k-regular if every vertex has degree k. Note that an
ordinary graph is a 2-uniform hypernetwork with wi = 1.

We wish to store a data set D = {x(n)}Nn=1 in a hypernetwork so that they
can be retrieved later by content. x(n) denotes the n-th pattern to store. To do
this we require the hypernetwork to represent the probabilistic distribution of
the data. We define the energy of the hypernetwork

E(x(n); W) = −
∑

i1

w
(1)
i1

x
(n)
i1
− 1

2

∑

i1,i2

w
(2)
i1i2

x
(n)
i1

x
(n)
i2

(4)

−1
6

∑

i1,i2,i3

w
(3)
i1i2i3

x
(n)
i1

x
(n)
i2

x
(n)
i3
− ...

= −
K∑

k=1

1
k!

∑

i1,i2,...,ik

w
(k)
i1i2...ik

x
(n)
i1

x
(n)
i2

...x
(n)
ik

,

where W represents the parameters (hyperedge weights) for the hypernetwork
model. Note that x

(n)
i1

x
(n)
i2

...x
(n)
ik

is a combination of k components of the data
item x(n) which is represented as a k-hyperedge in the network. The probability
of the data being generated from the hypernetwork is then expressed as

P (x(n)|W) =
1

Z(W)
exp

[
−E(x(n); W)

]
(5)

=
1

Z(W)
exp

⎡

⎣
K∑

k=1

1
k!

∑

i1,i2,...,ik

w
(k)
i1i2...ik

x
(n)
i1

x
(n)
i2

...x
(n)
ik

⎤

⎦ ,

DNA Hypernetworks for Information Storage and Retrieval 301

where the normalizing term (known as the partition function in statistical
physics) is given as

Z(W) =
∑

x(m)

K∑

k=1

1
k!

∑

i1,i2,...,ik

w
(k)
i1i2...ik

x
(m)
i1

x
(m)
i2

...x
(m)
ik

. (6)

In effect, the hypernetwork represents a probabilistic model of the data set using
a collection of hyperedges and their weights.

3 Representing a Hypernetwork with DNA Molecules

Given two sets of data items, D = X = {x(n)|n = 1, ..., N} and Y = {y(n)|n =
1, ..., N}, where Y is a corrupted version of X . The goal is to store X in a
hypernetwork H in such a way that, given a corrupted data y(n), the original
data x(n) is recovered or a clean version of it is reconstructed.

This task is known as pattern completion or pattern restoration for which
content-addressing and associative capability is required, such as in the self-
organizing systems [8,13]. The Hopfield network is another model of content-
addressable memory [6]. Boltzmann machines and the Helmholtz machines [7]
are generalizations of the Hopfield model by introducing the hidden variables in
addition to the observable variables. All these models are based on the second-
order correlations of the data. Higher-order correlations are captured by intro-
ducing hidden variables, and no explicit use of higher-order terms are made.
There is, however, evidence that higher-order correlation terms are useful. The
hypernetwork model has the advantage that the higher-order correlation terms
can be directly represented by the hyperedges. For example, a 3-hypernetwork
encodes the memory using the third-order correlation terms made of combina-
tions of the input variables.

We now explain the method for representing the hypernetwork using DNA
molecules so that the networks can be built and maintained by molecular com-
putational operators. The idea is based on the observation that the hypernetwork
is a collection of hyperedges with duplicates allowed. Basically, the original data
are fragmented into a set of vertices, i.e. hyperedges, and maintained as a col-
lection of hyperedges or, equivalently, an incidence matrix. Then the hyperedges
are encoded as DNA strands. In effect, a hypernetwork is represented as a library
of DNA strands where duplicates are allowed. The procedure is schematically
illustrated in Figure 2.

To be more concrete, let us assume that we opted for a 3-hypernetwork
model. We generate all possible hyperedges V [3] = {E1 = {x1, x2, x3}, E2 =
{x1, x2, x4}, ..., E|V [3]| = {xn−2, xn−1, xn}} or some subset of it to initialize the
library. This results in a hypernetwork represented as a collection of hyperedges.
The number of possible hyperedges increases by 2k × nCk in the number n of
variables and the cardinality k of hyperedges. There should be some mechanism
to choose the right hyperedges or to penalize the growth of the model complexity
and we will study some of these issues in a later section.

302 B.-T. Zhang and J.-K. Kim

DNA
Molecular
Library

x8 x9

x12

x1
x2

x3

x4

x5

x6

x7
x10

x11

x13

x14

x15

y

= 1

x15

=0

x14

=0

x13

=0

x12

=1

x11

=0

x10

=1

x9

=0

x8

=0

x7

=0

x6

=0

x5

=0

x4

=1

x3

=0

x2

=0

x1

=1

y

= 0

x15

=0

x14

=1

x13

=0

x12

=0

x11

=0

x10

=0

x9

=1

x8

=0

x7

=0

x6

=0

x5

=0

x4

=0

x3

=1

x2

=1

x1

=0

y

=1

x15

=0

x14

=0

x13

=1

x12

=0

x11

=0

x10

=0

x9

=0

x8

=1

x7

=0

x6

=1

x5

=0

x4

=0

x3

=1

x2

=0

x1

=0

x4 x10 y=1x1

x4 x12 y=1x1

x10 x12 y=1x4

x3 x9 y=0x2

x3 x14 y=0x2

x9 x14 y=0x3

x6 x8 y=1x3

x6 x13 y=1x3

x8 x13 y=1x6

1

2

3

1

2

3

y

=1

x15

=1

x14

=0

x13

=0

x12

=0

x11

=1

x10

=0

x9

=0

x8

=1

x7

=0

x6

=0

x5

=0

x4

=0

x3

=0

x2

=0

x1

=0
4

x11 x15 y=0x84

Hypernetwork of
DNA Molecules

Data Items

Fig. 2. General procedure for building a hypernetwork from a data set. From the data
items, higher-order correlation terms are extracted and represented as hyperedges
(with duplication allowed) which are then encoded as DNA strands. This library of
DNA molecules represents the hypernetwork where the weights are encoded as the
number of copies of the DNA molecules for hyperedges.

We use a similar method described in [12] to encode the hyperedge using a
DNA strand. Each vertex (i.e. the variable and its value) in the hyperedge is
encoded as a DNA sequence. For example, x1 = 0 is assigned a DNA codeword
‘TACAGG’, where ‘TACA’ is for variable x1 and ‘GG’ is for value ‘0’. In this
scheme, a hyperedge (x1 = 0, x3 = 1, x4 = 0) is represented as ‘TACAGG
CTACAA GCATGG’ assuming that x3 = ‘CTAC’, x4 = ‘GCAT’, and the value
1 is encoded as ‘AA’. Then the collection of DNA-encoded hyperedges represent
a hypernetwork of DNA molecules or a molecular hypernetwork.

4 Constructing a DNA Hypernetwork from Data

We now describe the procedure for building a molecular hypernetwork that fits
a given data set. The basic idea is, starting with a random network, to let the
network self-organize to learn the data as they are observed. The procedure is
illustrated in Figure 2. The hypernetwork is represented as a collection of hyper-
edges, and each hyperedge is encoded as a DNA molecule, as described in the
preceding section. The random k-uniform hypernetwork is then represented as a
collection (or library) L of hyperedges of cardinality k where the component vari-
ables of the hyperedge and the number of copies of the hyperedges are initialized
at random or according to some prior knowledge in the problem domain.

The procedure is summarized as follows:

– 1. Generate a library L of random hyperedges of cardinality k.
– 2. Get a pattern x. Generate the hyperedges of cardinality k from x (with

duplication permitted) into K.

DNA Hypernetworks for Information Storage and Retrieval 303

– 3. (Retrieval) Find the hyperedges of L matching to those of K with error
tolerance τ into M . Optionally (in case of multi-cycle retrieval), repeat this
step using M as K.

– 4. (Storage) Update L by L ← L + M + Copy(u) for hyperedge u ∈M .
– 5. Go to step 2 if not terminated.

The library starts with a random collection of hyperedges of cardinality k
(Step 1). As a training pattern x = (x1, x2, ..., xn) is observed, we sample a
collection K of hyperedges from x (Step 2). The hyperedges are generated in
multiple copies where the component variables and the number of copies are cho-
sen at random. The library L and the hyperedge collection K from the example
are merged to find the matching hyperedges in L (Step 3). This can be done
by hybridizing the DNA encoded hyperedges in the two collections (this to be
effective, we encode the example hyperedges in complementary DNA sequences
to those for the library hyperedges). The matching hyperedges are then copied
by some rate, i.e Copy(u) for u ∈M , and merged with the current library L to
update it (Step 4). The whole procedure is repeated for the next training pat-
tern (Step 5). Note that the procedure makes use of relatively simple molecular
operators such as selection, separation, and replication of DNA strands.

It is important to note that we allow error tolerance in this matching pro-
cess where the tolerance level τ is an algorithmic parameter. The error tolerance
parameter has several implications. First, it is useful to model the degree of un-
reliability of DNA hybridization reaction. Second, it is useful to control the gen-
eralization ability of the molecular hypernetwork memory, since the mismatches
have some effect of reducing the noises in raw data. A low error tolerance (allow-
ing only a small number of mismatches) might lead to overfitting while a high
error tolerance might result in unstable learning.

It can be shown that the storage process performs gradient search to find
maximum-likelihood parameters for the training data set. To see this, given a
set D = {x(n)}Nn=1 of n independently and identically distributed examples, we
consider the likelihood of the parameters W :

P (D|W) =
N∏

n=1

P (x(n)|W), (7)

where W consists of the weights or the number of copies of the hyperedges of
order k. Taking the logarithm of the likelihood we get

ln P (D|W) = ln
N∏

n=1

P (x(n)|W) (8)

=
N∑

n=1

⎧
⎨

⎩

⎡

⎣
K∑

k=1

1
k!

∑

i1,i2,...,ik

w
(k)
i1i2...ik

x
(n)
i1

x
(n)
i2

...x
(n)
ik

⎤

⎦− ln Z(W)

⎫
⎬

⎭ ,

where Eqn. (5) is used for P (x(n)|W). We take the derivative of the log-likelihood

304 B.-T. Zhang and J.-K. Kim

∇
∇w

(k)
i1,i2,...,ik

ln
N∏

n=1

P (x(n)|W) (9)

=
∇

∇w
(k)
i1,i2,...,ik

N∑

n=1

⎧
⎨

⎩

⎡

⎣
K∑

k=1

1

k!

∑

i1,i2,...,ik

w
(k)
i1i2...ik

x
(n)
i1

x
(n)
i2

...x
(n)
ik

⎤

⎦ − lnZ(W)

⎫
⎬

⎭

=
N∑

n=1

⎧
⎨

⎩
∇

∇w
(k)
i1,i2,...,ik

⎡

⎣
K∑

k=1

1

k!

∑

i1,i2,...,ik

w
(k)
i1i2...ik

x
(n)
i1

x
(n)
i2

...x
(n)
ik

⎤

⎦ − ∇
∇w

(k)
i1,i2,...,ik

ln Z(W)

⎫
⎬

⎭

=
N∑

n=1

{
x
(n)
i1

x
(n)
i2

...x
(n)
ik

− 〈
xi1xi2 ...xik

〉
P (x|W)

}

= N
{〈

xi1xi2 ...xik

〉
Data

− 〈
xi1xi2 ...xik

〉
P (x|W)

}
, (10)

where the two terms in the last line are defined as

〈xi1xi2 ...xik
〉Data =

1
N

N∑

n=1

[
x

(n)
i1

x
(n)
i2

...x
(n)
ik

]
(11)

〈xi1xi2 ...xik
〉P (x|W) =

∑

x

[xi1xi2 ...xik
P (x|W)] . (12)

The learning rule (10) suggests that maximum-likelihood is achieved by reducing
the difference between the average frequencies of the hyperedges in the data set
and in the hypernetwork model, as was described above. The next section studies
the empirical behavior of this procedure under various experimental set-ups.

5 Simulation Results

We are interested in examining the system property of the hypernetworks in
storing and retrieving patterns. In particular, we ask the following questions:

– 1. What is the effect of cardinality of hyperedges on the retrieval perfor-
mance? Does increasing the cardinality help the correct retrieval or deterio-
rate it?

– 2. How tolerant is the hypernetwork model of associative memory against
the noise or corruption of data.

To study the above questions, we used a data set consisting of handwritten
numeral images. The original data came from Optical Recognition of Handwrit-
ten Digits in UCI machine learning repository1 and we preprocessed it into a
training set of 3760 examples of 8 × 8 bitmap. The process of image storage into
the hypernetwork proceeded as described in the preceding section. To see the
noise effect, another set of “corrupted” images was made by randomly toggling

1 ftp://ftp.ics.uci.edu/pub/machine-learning-databases/optdigits/

DNA Hypernetworks for Information Storage and Retrieval 305

Fig. 3. Pattern completion by the hypernetwork model of associative memory. (Left
column) The partial images given as input cues. (Right column) The corresponding
output images reconstructed from the inputs.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

Corruption intensity

A
ve

ra
ge

 e
rr

or
 (

of

 m
is

m
at

ch
es

)

Cardinality 2
Cardinality 3
Cardinality 4

Fig. 4. The effect of cardinality k of hyperedges. Shown is the average error in image
reconstruction as a function of the corruption intensity for k = 2, 3, 4. The hypernet-
works with higher-cardinality hyperedges obtain better restoration performance than
the low-cardinality networks.

the pixels of the original images. We compared the image reconstruction perfor-
mances of k-uniform hypernetworks with varying k = 2, 3, 4, i.e., those consisting
of the hyperedges of cardinality k with associated weights. We also have run the
experiments by varying the level of error tolerance in matching between the
hyperedges from the input image and those maintained in the library.

Figure 3 shows the images completed from the partial input. In this task, im-
ages of numeral ‘6’ and ‘9’ have been stored into the hypernetwork. The network
recovers the appropriate patterns given partial contents as input cues. Figure 4
shows the effect of the cardinality parameter k on the associative recall of the
image. The restoration error was measured as the average number of mismatches
between the original image and the restored image. The results show that the
restoration errors for the hypernetworks of higher k were smaller than those of
lower k. It can be clearly seen that by increasing the cardinality of the hyper-
edges, the reconstruction error tends to decrease. This suggests the importance
of higher-order correlation terms in associative recall. In this experiment, we also

306 B.-T. Zhang and J.-K. Kim

1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

12

14

Corruption intensity

A
ve

ra
ge

 e
rr

or
 (

of

 m
is

m
at

ch
es

)

tau 0
tau 1
tau 2
tau 3
tau 4

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

Amplification intensity

A
ve

ra
ge

 e
rr

or
 (

of

 m
is

m
at

ch
es

)

0
1
2
3
4
5
6
7
8
9
10

Corruption
intensity

Fig. 5. The effects of the error tolerance level (left) and the amplification intensity
(right). The left panel shows the stability of associative recall in the hypernetwork
model against mismatches in reaction. The right panel suggests that lower ampli-
fication intensities are more appropriate to achieve a good restoration performance
for slightly-corrupted data, while higher amplification intensities are not necessarily
harmful for highly corrupted data.

changed the corruption levels of the images, which is depicted on the x-axis. The
graph shows that the higher-order effect is especially clear when the corruption
level is low.

The effect of error tolerance level τ is shown in Figure 5(left). When the num-
ber of mismatches between an input pattern and a library element is 2 or less,
the library element was assumed to be matched and duplicated as if it were per-
fectly matched. This result shows that the performance is relatively unaffected
up to some critical tolerance level (in this experiment, τ = 2). However, as error
tolerance increases, the average error of recovery increases because of overgener-
alization. Since the error tolerance parameter indirectly reflects the unreliability
in molecular reaction, this shows a stability of the hypernetwork memory in this
setting of experimental parameters.

We also studied the effect of amplification intensity, i.e., the strength of learning
for an observed image. The curves in Figure 5(right) show that keeping the am-
plification rate small helps reduce the reconstruction error, especially when the
images have a low-level of corruption. However, when the images are highly cor-
rupted, a higher rate of amplification does not necessarily hurt the performance.

6 Conclusion

We have presented a hypernetwork-based molecular architecture which allows
for content-addressable storage and retrieval of patterns. The realization of this
architecture using DNA molecules is described, and an algorithm is presented
that automatically store data into and retrieve them from this architecture us-
ing massively parallel molecular operations. Simulation results demonstrate the
possibility of using this network for pattern completion and reconstruction, i.e.

DNA Hypernetworks for Information Storage and Retrieval 307

as associative memory devices. Due to lack of computing power for simulation,
we were not able to perform simulations on k-hypernetworks for hyperedge car-
dinality k ≥ 5. However, realized in DNA computers, we expect the molecular
computational method to scale up better than in silicon computers. Another
implication of the hypernetwork model is that it suggests an interesting new
application of DNA-based molecular computing where a vast number of DNA
molecules with short, not necessarily long, strands is useful.

Acknowledgements

This research was supported by the Ministry of Science and Technology (NRL), the

Science and Engineering Foundation (Korean-German Researcher Exchange Program),

and the Ministry of Industry and Commerce (MEC).

References

1. Baum, E. B., “Building an associative memory vastly larger than the brain,” Sci-
ence, 268:583-585, 1995.

2. Berge, C. Graphs and Hypergraphs, North-Holland Publishing, Amsterdam, 1973.
3. Chen, J. Deaton, R. and Wang, Y.-Z., “A DNA-based memory with in vitro learn-

ing and associative recall,” DNA9, LNCS 2943:145-156, 2004.
4. Chisvin, L. and Duckworth, R. J., “Content-addressable and associative memory:

Alternatives to the ubiquitous RAM,” IEEE Computer, 22(7): 51-64, 1989.
5. Garzon, M. Bobba, K. and Neel, A., “Efficiency and reliability of semantic retrieval

in DNA-based memories,” DNA9, LNCS 2943:157-169, 2004.
6. Hopfield, J., “Neurons with graded response have collective computational prop-

erties like those of two-state neurons,” Proc. Nat. Acad. Sci., 81:3088-3092, 1984.
7. Hinton, G. E. Dayan, P. Frey, B. J. and Neal, R. M. “The wake-sleep algorithm

for unsupervised neural networks,” Science, 268:1158-1161, 1995.
8. Kohonen, T. Content-Addressable Memories, Springer-Verlag, Berlin, 1980.
9. Paziamtzis, K. and Sheikholeslami, A., “A low-power content-addressable memory

(CAM) using pipelined hierarchical search scheme,” IEEE Journal of Solid-State
Circuits, 39(9):1512-1519, 2004.

10. Reif, J.H., LaBean, T.H., Pirrung, M., Rana, V.S., Guo, B., Kingsford, C., Wick-
ham, G.S., “Experimental construction of very large scale DNA databases with
associative search capability,” DNA7, LNCS 2340:231-247, 2002.

11. Thurber, K. J. and Wald, L. D. “Associative and parallel processors,” ACM Com-
puting Surveys, 7(4): 215-225, 1975.

12. Zhang, B.-T. and Jang, H.-Y., “A Bayesian algorithm for in vitro molecular evo-
lution of pattern classifiers,” DNA10, LNCS 3384:458-467, 2005.

13. Zhang, B.-T. Yang, J.-S., and Chi, S.-W., “Self-organizing latent lattice models
for temporal gene expression profiling,” Machine Learning, 52(1/2):67-89, 2003.

	Introduction
	The Hypernetwork Model
	Representing a Hypernetwork with DNA Molecules
	Constructing a DNA Hypernetwork from Data
	Simulation Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

