
Bayesian Evolutionary Optimization Using
Helmholtz Machines

Byoung-Tak Zhang and Soo-Yong Shin

Artificial Intelligence Lab. (SCAI)
School of Computer Science and Engineering

Seoul National University-
Seoul 151-742, Korea

{btzhcing, syshin}@scai.snu.ac.kr
h t t p : / / s c a i . snu. ac. k r /

A b s t r a c t . Recently, several evolutionary algorithms have been proposed
that build and use an explicit distribution model of the population to
perform optimization. One of the main issues in this class of algorithms
is how to estimate the distribution of selected samples. In this paper, we
present a Bayesian evolutionary algorithm (BEA) that learns the sample
distribution by a probabilistic graphical model known as Helmholtz ma
chines. Due to the generative nature and availability of the wake-sleep
learning algorithm, the Helmholtz machines provide an effective tool for
modeling and sampling from the distribution of selected individuals. The
proposed method has been applied to a suite of GA-deceptive functions.
Experimental results show that the BEA with the Helmholtz machine
outperforms the simple genetic algorithm.

1 Introduction

Evolutionary algorithms are typically used to solve function optimization prob
lems, i.e. to find the point x* tha t maximizes the objective function:

X* = a r g m a x { / (x) } . (1)
X

Conventional evolutionary algorithms solve this problem by iteratively generat
ing populations X* of search points x- until x* is found or the best solution
x^p^j at generation t is acceptable [3]. This class of algorithms does not use an
explicit model of the sample population; They just generate new points based
on old points. Therefore, it is difficult to capture the structure of the objective
function.

An alternative way is to model the population explicitly using a probability
density function. Since many optimization problems have underlying structure
in their search space, using this structure can help the search for the optimal
solution. Recently, a number of methods have been proposed tha t explicitly
model the population of good solutions and use the constructed model to guide
further search [2,5,9,11]. These methods are generally known as the estimation

828

of distribution algorithms or ED As [8]. They use global information contained in
the population, instead of using local information through crossover or mutation
of individuals. From the population, statistics of the hidden structure are derived
and used when generating new individuals.

One of the main issues in distribution-based optimization is how to build
and sample from the distribution of the population. Several methods have been
proposed, including the methods based on dependency chains [5], dependency
trees [2], factorization [9], neural trees [13], Bayesian networks [8,12], and genetic
programs [14].

In this paper, we present a method that estimates the sample distribution
using a graphical learning model known as Helmholtz machines. The method
is implemented as a Bayesian evolutionary algorithm (BEA), a probabilistic
model of evolutionary computation [13]. The Helmholtz machine is a multi
layer network [4] and can find the hidden structure in a data set. Even if the
structure has complex relationship, the Helmholtz machine can model the data
dependency by a hierarchical network. The wake-sleep algorithm [6] provides
a learning mechanism for capturing the underlying structure of the data. In
addition, since the Helmholtz machine is a generative model, generation of new
samples from the model is efficient. Our experimental evidence supports that
Helmholtz machines are effective for estimation and simulation of the population
distribution.

The paper is organized as follows. In Section 2, previous work is briefly
reviewed. Section 3 presents the Bayesian evolutionary algorithm using the
Helmholtz machine. We also describe the architecture and learning algorithm
of the Helmholtz machine. Section 4 reports the experimental results. Conclu
sions are drawn in Section 5.

2 Optimization by Distribution Estimation

A simplest way for distribution estimation is to consider each variable in a prob
lem independently and generate new solutions by only preserving the propor
tions of the values of all variables independently of the remaining solutions.
Population-based incremental learning (PBIL) uses a single probability vector
to replace the population [1]. The components of the vector are regarded inde
pendently of each other, so PBIL only takes into account first-order statistics.
MiJhlenbein and PaaB [7] present a univariate marginal distribution algorithm
(UMDA) that estimates the distribution using univariate marginal frequencies
in the set of selected parents, and resamples the new points. UMDA shows good
performance on linear problems. Both PBIL and UMDA are, however, not ap
propriate for learning higher-order dependency.

To capture more complex dependency, structures that can express higher-
order statistics are necessary. De Bonet et al. [5] present a population-based al
gorithm using second-order statistics, called MIMIC (mutual information maxi
mizing input clustering). It uses a chain structure to express conditional probabil
ities. Baluja and Davies [2] propose to use dependency trees to learn second-order

829

probability distributions and use these statistics to generate new solutions. Pe-
likan and Miihlenbein [11] suggest the bivariate marginal distribution algorithm
(BMDA) as an extension of the UMDA. BMDA uses the pairwise dependencies
in order to improve algorithms that use simple univariate marginal distribution.
MIMIC, dependency trees, and BMDA can cover pairwise interactions.

Miihlenbein and Mahnig [9] present the factorized distribution algorithm
(FDA). Here, the distribution is decomposed into various factors or conditional
probabilities. Distribution factorization is obtained by analyzing the problem
structure. FDA is able to cover interactions of higher-order and combine impor
tant partial solutions effectively. Even though it works very well on additively
decomposable problems, FDA requires the prior information about the problem
in the form of a problem decomposition and its factorization. Pelikan et al.[12]
describe the Bayesian optimization algorithm (BOA) that uses techniques from
the field of modeling data by Bayesian networks in order to estimate the joint
distribution of promising solutions. BOA is also capable of expressing higher-
order interactions. In principle, BOA does not require any predefined structure
of a problem. But, if no information on the structure is given, BOA also has
some difficulties since the construction of a Bayesian network is not an easy task
without any prior information.

Zhang [13] presents Bayesian evolutionary algorithms (BEAs) where opti
mization is formulated as a probabihstic process of finding an individual with
the maximum a posteriori probability (MAP). In previous work, tree-structured
neural networks [15] and Lisp-like symbolic programs [14] were used to model
the distribution of the data points. In the following section, we present another
implementation of the BEA that uses a Helmholtz machine for the estimation
of the density of search points and for generating new search points from the
estimated density.

3 The Bayesian Evolutionary Algori thm Using Helmholtz
Machines

3.1 The Bayesian Evolutionary Algorithm for Optimization

The Bayesian evolutionary algorithm is a probabilistic model of evolutionary
computation that is based on the Bayesian inductive principle [13]. Initially, a
population X° of M individuals are generated from a prior distribution Po(x).
Then, the fitness values of the individuals are observed and its likelihood P{X^\6)
is computed, where 9 is the parameter vector for the probability model. Combin
ing the prior and likelihood, we can compute the posterior probability P(9\X^)
of individuals, using the Bayes rule:

Since P(X*) does not depend on the parameter vector 6, maximization of Eqn.
(2) is equivalent to maximizing the numerator, i.e.

p{e\x^) oc p(x^\e)Pie). (3)

830

Offspring are then sampled from tfie posterior distribution and selected into the
next generation.

Note tha t , under the uniform prior for ^, maximization of Eqn. (3) is reduced
to the problem of finding the maximum hkelihood estimate 6*:

e* = a r g m a x P (6 l | X ') = argmaxP(X*|6»). (4)
6 &

In this paper, we make use of this assumption and present a Bayesian evolution
ary algorithm tha t performs optimization using a Helmholtz machine to estimate
P{X^\9*). The algorithm is summarized in Figure 1.

1. (Initialize) X° •«— generate M search points x° from the prior distribution Po(x).
Set generation count t <— 0.

2. (P-step) Estimate the parameter 6* of a Helmholtz machine that maximizes
p{x^\e).

3. (V-step) Generate L variations X' = {x'j,..., x'^} by sampling from the posterior
predictive distribution P(-|-i(x) = P{x\X*) using 9' of the Helmholtz machine.

4. (S-step) Select M points from X' and X ' into X'+^ = {x'i+^ ... ,x'^^} based on
their fitness values / (x) .

5. (Loop) Set t i— t + 1 and go to Step 2.

Fig. 1. Outhne of the Bayesian evolutionary algorithm using the Helmholtz machine
for density estimation.

In essence, the BEA consists of three steps: probability estimation (P) , vari
ation (V), and selection (S) steps. In the P-step, the density of the current
population X* is estimated, in this case, by a Helmholtz machine. The same
Helmholtz machine is used though the generations. In the V-step, the learned
Helmholtz machine is used to generate offspring population X' of L da ta points.
More details on learning and simulating from the Helmholtz machine are de
scribed in the next subsection. In the S-step, M best individuals are chosen into
the next population A'*+^ from the union of X ' and X'. In the experiments, we
use L = lOM. This is similar to the {fi + A) evolution strategy [3] with /it = M,
A = lOM.

Note the similarity between the general s tructure of the BEA and the concep
tual EDA [8]. The original BEA [15] is more general than this; The one above is
a EDA-like variant of it. More general BE As calculate the maximum a posteriori
probabihty rather than the maximum likelihood and the sample size increases
as generation goes on.

3.2 D i s t r i b u t i o n E s t i m a t i o n by t h e H e l m h o l t z M a c h i n e

The Helmholtz machine is a connectionist system with multiple layers of neuron
like binary stochastic processing units connected hierarchically by two sets of
weights, recognition weights and generative weights [4]. Bot tom-up connections

831

R, shown as dashed Hnes in Fig. 2, implement the recognition model. This model
is to infer a probability distribution over the underlying causes y (latent vari
ables) of the input vector x:

P (y |x ,R) . (5)

Top-down connections G, shown as solid lines in Fig. 2, implement the generative
model. This second model is to reconstruct an approximation to the original
input vector x

P(x |y ,G) (6)

from the underlying representation y captured by the hidden layer of the net
work. This enables to operate in a self-supervised manner. Both the recognition
and generative models operate in a strictly feedforward fashion, with no feed
back.

Generative Connections

Latent Variables

Recognition Connections

Visible Variables

Fig. 2. The Helmholtz machine (two-layer network).

Hinton et al. [6] describe a stochastic algorithm, called the wake-sleep algo
rithm, to calculate the recognition and generative weights of the Helmholtz ma
chine. There are two phases in the algorithm: a wake phase and a sleep phase. In
the "wake" phase. The units are driven bottom-up using the recognition weights,
producing a representation of the input vector in the hidden layer. Therefore,
the representation y^ produced in the hidden layer of the network provides a
representation of the input vector Xj,:

yc = /i(x<;,R). (7)

Although the nodes are driven by the recognition weights, only the generative
weights are actually learned during the wake phase using locally available infor
mation and the simple delta rule [10]:

G' = G -f 77(xe - Gyc)yc (8)

832

where G is the generative weight vector, x^ is the c-th sample, yc is the value
of the latent variables, and t) is the learning rate. In effect, this phase of the
learning process makes generative weights be adapted to increase the probability
that they would reconstruct the correct activity vector in the layer below.

In the "sleep" phase of the algorithm, the recognition weights R are turned
off. And all of the units in the network is driven using the generative weights,
starting at the hidden layer and working down to the input units. Because the
nodes are stochastic and the values of the hidden units, y, are randomly chosen,
repeating this process would typically gives rise to many different "fantasy"
vectors x on the input layer:

X;t=s(yfc,G). (9)

These fantasies supply an unbiased sample of the network's generative model of
the data. Having produced a fantasy, the recognition weights are adjusted by
the simple delta rule [10]:

R' = K + r]{yk-Rxk)^k, (10)

where R is the recognition weight vector, y^ is the k-th latent vector, and x^ is
the fc-th fantasy vector. The "sleep" phase uses only locally available informa
tion without reference to any observation. This is why offspring in the Bayesian
evolutionary algorithm can be efficiently sampled from the distribution.

In effect, the Helmholtz machine estimates the distribution of the data points
X ' , i.e. find the parameters 9* = (R*, G*) that maximize the hkelihood P(X ') .
After the distribution is learned, the samples from this distribution can be gen
erated by randomly setting the latent variables and then propagating the values
down to the input layer, just as the process in the sleep mode of the wake-sleep
algorithm. This process is equivalent to sampling L offspring from the posterior
predictive distribution since the following holds:

Pt+i(x) = P(x|X<) = / / Pix\y,9)Piy,e\X')d0dy (11)
JY Je

^ I P{x\y,9*)P{y,e*\X')dy (12)

L

« ^ P (x | y f c , r) , (13)
jfc=i

where 6* — (R*,G*) is the maximum likelihood estimator for data X*, and
P(x|y)fc,^*) is the generative model for the latent vectors y ,̂ which are indepen
dently sampled from the uniform distribution.

4 Experimental Results

Experiments have been performed on three benchmark problems from the liter
ature [11]. They are the one-max function, quadratic function, and 3-deceptive
function as defined below.

833

— One-max function:

Jonemax[^) —- / ^ ^ i ? \^^)
i=0

where Xi is the value on the ith position in bit string x. The one-max function
is a simple linear function that is just the sum of all bits in a string.

— Quadratic function:

fguadratic{^,T^) = 2 ^ / 2 (x ^ (2 i)) ^7T(2i+l)), (15)

j=0

where TT is defined as

n{i mod fc) + 1 T^kii) =
k

(16)

For this problem, the permutation of order 2, 7r2, was used and /2 is defined
as

f2{u,v) = 0.9-0.9{u + v) + 1.9uv. (17)

With both arguments equal to 1 we get /2(1,1) = 1- Therefore, the optimum
is clearly in the string with all I's.
3-deceptive function:

/3decep(i«e(x,7r) = 2 ^ fsi^iriSi) + ^7r{3i+l) + X „ (3 i + 2)) , (18)
i=0

where 773 is used and fs is defined as

0.9

0.8

0

1

if M = 0,

if M = 1,

if w = 2,

otherwise

/ 3 (") = S • T . ' (19)

The performance of the Helmholtz machine was compared with that of the
simple genetic algorithm (sGA). The sGA we use is the usual implementation
that is based on one cut-point crossover, one point mutation, and roulette-wheel
selection. The parameters for sGA were: maximum generation = 10®, population
size = 10^, crossover rate = 0.5, and mutation rate = 0.01. The parameters of
the BEA with the Helmholtz machine were: maximum generation = 10^, popu
lation size = 10^, learning rate = 0.001, and the number of learning iterations
= lO'̂ .To select the next population, upper 10% truncation selection was used.
For objective comparison, the parameter values for both methods were set as
similar as possible. We use a 2-layer Helmholtz machine for the Beysian evolu
tionary algorithm, and only one latent variable was used for solving both the

834

Table 1. Results for the one-max function.

Prob.
Size

50
100
150
200
250
300

Succ
BEA

100
100
100
100
100
100

%
sGA

100
100
100
100
100
100

^iterations
BEA sGA

5.0 116.8
27.8 625.7
54.2 1925.3
70.0 4576.0
96.6 10103.6

139.6 26549.7

CPU time
BEA

295
2,758
8,480

13,912
24,584
42,549

(second)
sGA

6
30

116
324
950

2737

Table 2. Results for the quadratic function.

Prob.
Size

50
100
150
200
250
300

Succ
BEA

100
100
100
100
100
100

%
sGA

100
100
0
0
0
0

^iterations
BEA

20.1
48.0
58.6
85.1

118.8
134.0

sGA

367.2
18833.1

-
-
-
-

CPU time
BEA

1,073
4,791
9,229

17,061
30,222
41,173

(second)
sGA

27
2,218

-
-
-
-

Table 3. Results for the 3-deceptive function.

Prob.
Size

15
30
45
60
90
120

Succ
BEA

100
100
100
100
100
100

%
sGA

30
0
0
0
0
0

^iterations
BEA sGA

3.4 49500.1
6.3
7.8

10.5
13.1
15.7

CPU time
BEA

92
264
494
827

1587
2436

(second)
sGA

2623
-
-
-
-
-

Table 4. Results for various pop size on the one-max function with problem size 100.

Prob.
Size

50
100
500
1000

Succ %
BEA

100
100
100
100

sGA

0
0

100
100

#iterations
BEA

61.5
59.0
48.7
46.7

sGA

-
-

1975.6
625.7

835

one-max and quadratic functions. While more than one latent variable was used
for 3-deceptive function. A constructive algorithm was devised to solve the for
3-deceptive function. It starts from one latent variable, and increases the number
of latent variables during learning.

Tables 1-4 summarize the results. The results shown are average values over
10 runs. The CPU time was measured on Intel Pentium II - 350 Mhz PC with
Windows 2000. The algorithm is considered as converged if an optimal solution
is found. The entry of the tables marked with '-' means that the algorithm did
not find the optimal solution. The results show that the Bayesian evolutionary
algorithms with Helmholtz machines outperform the simple genetic algorithm
both in the success rate and the number of iterations. BEAs find the optimal
solutions all the time while the simple GA finds solutions for easy problems such
as one-max and small size instances of the quadratic and 3-deceptive function.
It can be observed that from Table 4 that the BEA with Helmholtz machine
can solve the problem using a very small data set. Even though the population
size is 50, BEA can found the optimal solution. The improved algorithms, BEA
with constructive Helmholtz machines could solve the 3-deceptive function very
efficiently, significantly outperforming the simple genetic algorithm.

The number of iterations for the sGA denotes the number of generations,
while that for the BEA with the Helmholtz machine denotes the number of
sampling the population, excluding the distribution estimation (learning) time.
Therefore, it is hard to infer the CPU time from the number of iterations only.
For comparing the real evaluation time, we measured the CPU time for BEA
with Helmholtz machines and the simple genetic algorithm. Even if BEAs took
more CPU time than sGAs, BEAs could solve larger size problems. It is also
interesting that the number of evaluations for sGAs grows exponentially while
that for BEAs grows almost linearly.

5 Conclusions

We presented a distribution estimation algorithm that is based on the Helmholtz
machine. Our empirical results show that the Bayesian evolutionary optimization
algorithms using Helmholtz machines outperform the simple genetic algorithms
in several conditions. The superiority of the probabilistic algorithms tend to grow
linearly as the problem complexity and size increase and solve the using very
small data sets. Future work includes the analysis of the effect of the number of
latent variables and the number of hidden layers in the Helmholtz machine for
more effective estimation of population distribution.

Acknowledgments

This research was supported in part by the Korea Science and Engineering Foun
dation (KOSEF) under Grant 981-0920-107-2, by the Korea Ministry of Science
and Technology through KISTEP under Grant BR-2-1-G-06, and by BK21 pro
gram.

836

References

1. Baluja, S. and Caruana, R., "Removing the genetics from the standard genetic
algorithm", Technical Report CMU-CS-95-141, Carnegie Mellon University, 1995.

2. Baluja, S. and Davies, S., "Using optimal dependency-trees for combinatorial op
timization: learning the structure of the search space", Proc. 14th Int. Conf. on
Machine Learning, pp. 30-38, Morgan-Kaufmann, 1997.

3. Back, T., Evolutionary Algorithms in Theory and Practice. Oxford Univ. Press,
1996.

4. Dayan, P., Neal, G.E., and Zemel, R.S., "The Helmholtz machine", Neural Compu
tation, 7: 1022-1037, 1995.

5. De Bonet, J.S., Isbell, C.L., and Viola, P., "MIMIC: Finding optima by estimating
probability densities", NIPS 9, pp. 424-430, The MIT Press, 1997.

6. Hinton, G.E., Dayan, P., Frey, B.J., Neal R. M., "The wake-sleep algorithm for
unsupervised neural networks". Science, 268: 1158-1160, 1995.

7. Miihlenbein, H. and Paafi, G., "Firom recombination of genes to the estimation of
distributions I: Binary parameters", PPSN IV, LNCS 1141, pp. 178-187, Springer,
1996.

8. Miihlenbein, H., Mahnig, T., and A. Ochoa, "Schemata, distributions and graphical
models in evolutionary optimization". Journal of Heuristics, 5:215-247, 1999.

9. Miihlenbein, H. and Mahnig, T., "FDA - A scalable evolutionary algorithm for
the optimization of additively decomposed functions". Evolutionary Computation,
T(4):353-376, 1999.

10. Neal, R.M. and Dayan, P., "Factor analysis using delta-rule wake-sleep learning",
Neural Computation, 9:1781-1803, 1997.

11. Pelikan, M. and Miihlenbein, H., "The bivariate marginal distribution algorithm".
Advances in Soft Computing - Engineering Design and Manufacturing, pp. 521-535,
London: Springer-Verlag, 1999.

12. Pelikan, M., Goldberg, D.E., and Cantii-Paz, E., "BOA: The Bayesian optimization
algorithm", GECCO-99: Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 525-532, CA: Morgan Kaufmann, 1999.

13. Zhang, B.-T., A Bayesian framework for evolutionary computation. In Proc. 1999
Congress on Evolutionary Computation (CEC99), IEEE Press, pp. 722-727, 1999.

14. Zhang, B.-T., Bayesian methods for efficient genetic programming. Genetic Pro
gramming and Evolvable Machines, l(3):217-242, 2000.

15. Zhang, B.-T. and Joung, J.-G., Efficient model induction by a Bayesian evolution
ary algorithm with incremental data inheritance. Technical Report SCAI-98-017,
Artificial Intelligence Lab (SCAI), Seoul National University, August 1998.

