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A b s t r a c t . Recently, several evolutionary algorithms have been proposed 
that build and use an explicit distribution model of the population to 
perform optimization. One of the main issues in this class of algorithms 
is how to estimate the distribution of selected samples. In this paper, we 
present a Bayesian evolutionary algorithm (BEA) that learns the sample 
distribution by a probabilistic graphical model known as Helmholtz ma­
chines. Due to the generative nature and availability of the wake-sleep 
learning algorithm, the Helmholtz machines provide an effective tool for 
modeling and sampling from the distribution of selected individuals. The 
proposed method has been applied to a suite of GA-deceptive functions. 
Experimental results show that the BEA with the Helmholtz machine 
outperforms the simple genetic algorithm. 

1 Introduction 

Evolutionary algorithms are typically used to solve function optimization prob­
lems, i.e. to find the point x* tha t maximizes the objective function: 

X* = a r g m a x { / ( x ) } . (1) 
X 

Conventional evolutionary algorithms solve this problem by iteratively generat­
ing populations X* of search points x- until x* is found or the best solution 
x^p^j at generation t is acceptable [3]. This class of algorithms does not use an 
explicit model of the sample population; They just generate new points based 
on old points. Therefore, it is difficult to capture the structure of the objective 
function. 

An alternative way is to model the population explicitly using a probability 
density function. Since many optimization problems have underlying structure 
in their search space, using this structure can help the search for the optimal 
solution. Recently, a number of methods have been proposed tha t explicitly 
model the population of good solutions and use the constructed model to guide 
further search [2,5,9,11]. These methods are generally known as the estimation 
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of distribution algorithms or ED As [8]. They use global information contained in 
the population, instead of using local information through crossover or mutation 
of individuals. From the population, statistics of the hidden structure are derived 
and used when generating new individuals. 

One of the main issues in distribution-based optimization is how to build 
and sample from the distribution of the population. Several methods have been 
proposed, including the methods based on dependency chains [5], dependency 
trees [2], factorization [9], neural trees [13], Bayesian networks [8,12], and genetic 
programs [14]. 

In this paper, we present a method that estimates the sample distribution 
using a graphical learning model known as Helmholtz machines. The method 
is implemented as a Bayesian evolutionary algorithm (BEA), a probabilistic 
model of evolutionary computation [13]. The Helmholtz machine is a multi­
layer network [4] and can find the hidden structure in a data set. Even if the 
structure has complex relationship, the Helmholtz machine can model the data 
dependency by a hierarchical network. The wake-sleep algorithm [6] provides 
a learning mechanism for capturing the underlying structure of the data. In 
addition, since the Helmholtz machine is a generative model, generation of new 
samples from the model is efficient. Our experimental evidence supports that 
Helmholtz machines are effective for estimation and simulation of the population 
distribution. 

The paper is organized as follows. In Section 2, previous work is briefly 
reviewed. Section 3 presents the Bayesian evolutionary algorithm using the 
Helmholtz machine. We also describe the architecture and learning algorithm 
of the Helmholtz machine. Section 4 reports the experimental results. Conclu­
sions are drawn in Section 5. 

2 Optimization by Distribution Estimation 

A simplest way for distribution estimation is to consider each variable in a prob­
lem independently and generate new solutions by only preserving the propor­
tions of the values of all variables independently of the remaining solutions. 
Population-based incremental learning (PBIL) uses a single probability vector 
to replace the population [1]. The components of the vector are regarded inde­
pendently of each other, so PBIL only takes into account first-order statistics. 
MiJhlenbein and PaaB [7] present a univariate marginal distribution algorithm 
(UMDA) that estimates the distribution using univariate marginal frequencies 
in the set of selected parents, and resamples the new points. UMDA shows good 
performance on linear problems. Both PBIL and UMDA are, however, not ap­
propriate for learning higher-order dependency. 

To capture more complex dependency, structures that can express higher-
order statistics are necessary. De Bonet et al. [5] present a population-based al­
gorithm using second-order statistics, called MIMIC (mutual information maxi­
mizing input clustering). It uses a chain structure to express conditional probabil­
ities. Baluja and Davies [2] propose to use dependency trees to learn second-order 
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probability distributions and use these statistics to generate new solutions. Pe-
likan and Miihlenbein [11] suggest the bivariate marginal distribution algorithm 
(BMDA) as an extension of the UMDA. BMDA uses the pairwise dependencies 
in order to improve algorithms that use simple univariate marginal distribution. 
MIMIC, dependency trees, and BMDA can cover pairwise interactions. 

Miihlenbein and Mahnig [9] present the factorized distribution algorithm 
(FDA). Here, the distribution is decomposed into various factors or conditional 
probabilities. Distribution factorization is obtained by analyzing the problem 
structure. FDA is able to cover interactions of higher-order and combine impor­
tant partial solutions effectively. Even though it works very well on additively 
decomposable problems, FDA requires the prior information about the problem 
in the form of a problem decomposition and its factorization. Pelikan et al.[12] 
describe the Bayesian optimization algorithm (BOA) that uses techniques from 
the field of modeling data by Bayesian networks in order to estimate the joint 
distribution of promising solutions. BOA is also capable of expressing higher-
order interactions. In principle, BOA does not require any predefined structure 
of a problem. But, if no information on the structure is given, BOA also has 
some difficulties since the construction of a Bayesian network is not an easy task 
without any prior information. 

Zhang [13] presents Bayesian evolutionary algorithms (BEAs) where opti­
mization is formulated as a probabihstic process of finding an individual with 
the maximum a posteriori probability (MAP). In previous work, tree-structured 
neural networks [15] and Lisp-like symbolic programs [14] were used to model 
the distribution of the data points. In the following section, we present another 
implementation of the BEA that uses a Helmholtz machine for the estimation 
of the density of search points and for generating new search points from the 
estimated density. 

3 The Bayesian Evolutionary Algori thm Using Helmholtz 
Machines 

3.1 The Bayesian Evolutionary Algorithm for Optimization 

The Bayesian evolutionary algorithm is a probabilistic model of evolutionary 
computation that is based on the Bayesian inductive principle [13]. Initially, a 
population X° of M individuals are generated from a prior distribution Po(x). 
Then, the fitness values of the individuals are observed and its likelihood P{X^\6) 
is computed, where 9 is the parameter vector for the probability model. Combin­
ing the prior and likelihood, we can compute the posterior probability P(9\X^) 
of individuals, using the Bayes rule: 

Since P(X*) does not depend on the parameter vector 6, maximization of Eqn. 
(2) is equivalent to maximizing the numerator, i.e. 

p{e\x^) oc p(x^\e)Pie). (3) 
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Offspring are then sampled from tfie posterior distribution and selected into the 
next generation. 

Note tha t , under the uniform prior for ^, maximization of Eqn. (3) is reduced 
to the problem of finding the maximum hkelihood estimate 6*: 

e* = a r g m a x P ( 6 l | X ' ) = argmaxP(X*|6»). (4) 
6 & 

In this paper, we make use of this assumption and present a Bayesian evolution­
ary algorithm tha t performs optimization using a Helmholtz machine to estimate 
P{X^\9*). The algorithm is summarized in Figure 1. 

1. (Initialize) X° •«— generate M search points x° from the prior distribution Po(x). 
Set generation count t <— 0. 

2. (P-step) Estimate the parameter 6* of a Helmholtz machine that maximizes 
p{x^\e). 

3. (V-step) Generate L variations X' = {x'j,..., x'^} by sampling from the posterior 
predictive distribution P(-|-i(x) = P{x\X*) using 9' of the Helmholtz machine. 

4. (S-step) Select M points from X' and X ' into X'+^ = {x'i+^ ... ,x'^^} based on 
their fitness values / ( x ) . 

5. (Loop) Set t i— t + 1 and go to Step 2. 

Fig. 1. Outhne of the Bayesian evolutionary algorithm using the Helmholtz machine 
for density estimation. 

In essence, the BEA consists of three steps: probability estimation (P) , vari­
ation (V), and selection (S) steps. In the P-step, the density of the current 
population X* is estimated, in this case, by a Helmholtz machine. The same 
Helmholtz machine is used though the generations. In the V-step, the learned 
Helmholtz machine is used to generate offspring population X' of L da ta points. 
More details on learning and simulating from the Helmholtz machine are de­
scribed in the next subsection. In the S-step, M best individuals are chosen into 
the next population A'*+^ from the union of X ' and X'. In the experiments, we 
use L = lOM. This is similar to the {fi + A) evolution strategy [3] with /it = M, 
A = lOM. 

Note the similarity between the general s tructure of the BEA and the concep­
tual EDA [8]. The original BEA [15] is more general than this; The one above is 
a EDA-like variant of it. More general BE As calculate the maximum a posteriori 
probabihty rather than the maximum likelihood and the sample size increases 
as generation goes on. 

3.2 D i s t r i b u t i o n E s t i m a t i o n by t h e H e l m h o l t z M a c h i n e 

The Helmholtz machine is a connectionist system with multiple layers of neuron­
like binary stochastic processing units connected hierarchically by two sets of 
weights, recognition weights and generative weights [4]. Bot tom-up connections 
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R, shown as dashed Hnes in Fig. 2, implement the recognition model. This model 
is to infer a probability distribution over the underlying causes y (latent vari­
ables) of the input vector x: 

P (y |x ,R) . (5) 

Top-down connections G, shown as solid lines in Fig. 2, implement the generative 
model. This second model is to reconstruct an approximation to the original 
input vector x 

P(x |y ,G) (6) 

from the underlying representation y captured by the hidden layer of the net­
work. This enables to operate in a self-supervised manner. Both the recognition 
and generative models operate in a strictly feedforward fashion, with no feed­
back. 

Generative Connections 

Latent Variables 

Recognition Connections 

Visible Variables 

Fig. 2. The Helmholtz machine (two-layer network). 

Hinton et al. [6] describe a stochastic algorithm, called the wake-sleep algo­
rithm, to calculate the recognition and generative weights of the Helmholtz ma­
chine. There are two phases in the algorithm: a wake phase and a sleep phase. In 
the "wake" phase. The units are driven bottom-up using the recognition weights, 
producing a representation of the input vector in the hidden layer. Therefore, 
the representation y^ produced in the hidden layer of the network provides a 
representation of the input vector Xj,: 

yc = /i(x<;,R). (7) 

Although the nodes are driven by the recognition weights, only the generative 
weights are actually learned during the wake phase using locally available infor­
mation and the simple delta rule [10]: 

G' = G -f 77(xe - Gyc)yc (8) 
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where G is the generative weight vector, x^ is the c-th sample, yc is the value 
of the latent variables, and t) is the learning rate. In effect, this phase of the 
learning process makes generative weights be adapted to increase the probability 
that they would reconstruct the correct activity vector in the layer below. 

In the "sleep" phase of the algorithm, the recognition weights R are turned 
off. And all of the units in the network is driven using the generative weights, 
starting at the hidden layer and working down to the input units. Because the 
nodes are stochastic and the values of the hidden units, y, are randomly chosen, 
repeating this process would typically gives rise to many different "fantasy" 
vectors x on the input layer: 

X;t=s(yfc,G). (9) 

These fantasies supply an unbiased sample of the network's generative model of 
the data. Having produced a fantasy, the recognition weights are adjusted by 
the simple delta rule [10]: 

R' = K + r]{yk-Rxk)^k, (10) 

where R is the recognition weight vector, y^ is the k-th latent vector, and x^ is 
the fc-th fantasy vector. The "sleep" phase uses only locally available informa­
tion without reference to any observation. This is why offspring in the Bayesian 
evolutionary algorithm can be efficiently sampled from the distribution. 

In effect, the Helmholtz machine estimates the distribution of the data points 
X ' , i.e. find the parameters 9* = (R*, G*) that maximize the hkelihood P(X ' ) . 
After the distribution is learned, the samples from this distribution can be gen­
erated by randomly setting the latent variables and then propagating the values 
down to the input layer, just as the process in the sleep mode of the wake-sleep 
algorithm. This process is equivalent to sampling L offspring from the posterior 
predictive distribution since the following holds: 

Pt+i(x) = P(x|X<) = / / Pix\y,9)Piy,e\X')d0dy (11) 
JY Je 

^ I P{x\y,9*)P{y,e*\X')dy (12) 

L 

« ^ P ( x | y f c , r ) , (13) 
jfc=i 

where 6* — (R*,G*) is the maximum likelihood estimator for data X*, and 
P(x|y)fc,^*) is the generative model for the latent vectors y ,̂ which are indepen­
dently sampled from the uniform distribution. 

4 Experimental Results 

Experiments have been performed on three benchmark problems from the liter­
ature [11]. They are the one-max function, quadratic function, and 3-deceptive 
function as defined below. 
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— One-max function: 

Jonemax[^) —- / ^ ^ i ? \^^) 
i=0 

where Xi is the value on the ith position in bit string x. The one-max function 
is a simple linear function that is just the sum of all bits in a string. 

— Quadratic function: 

fguadratic{^,T^) = 2 ^ / 2 ( x ^ ( 2 i ) ) ^7T(2i+l)), (15) 

j=0 

where TT is defined as 

n{i mod fc) + 1 T^kii) = 
k 

(16) 

For this problem, the permutation of order 2, 7r2, was used and /2 is defined 
as 

f2{u,v) = 0.9-0.9{u + v) + 1.9uv. (17) 

With both arguments equal to 1 we get /2(1,1) = 1- Therefore, the optimum 
is clearly in the string with all I's. 
3-deceptive function: 

/3decep(i«e(x,7r) = 2 ^ fsi^iriSi) + ^7r{3i+l) + X „ ( 3 i + 2 ) ) , (18) 
i=0 

where 773 is used and fs is defined as 

0.9 

0.8 

0 

1 

if M = 0, 

if M = 1, 

if w = 2, 

otherwise 

/ 3 ( " ) = S • T . ' (19) 

The performance of the Helmholtz machine was compared with that of the 
simple genetic algorithm (sGA). The sGA we use is the usual implementation 
that is based on one cut-point crossover, one point mutation, and roulette-wheel 
selection. The parameters for sGA were: maximum generation = 10®, population 
size = 10^, crossover rate = 0.5, and mutation rate = 0.01. The parameters of 
the BEA with the Helmholtz machine were: maximum generation = 10^, popu­
lation size = 10^, learning rate = 0.001, and the number of learning iterations 
= lO'̂ .To select the next population, upper 10% truncation selection was used. 
For objective comparison, the parameter values for both methods were set as 
similar as possible. We use a 2-layer Helmholtz machine for the Beysian evolu­
tionary algorithm, and only one latent variable was used for solving both the 
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Table 1. Results for the one-max function. 

Prob. 
Size 

50 
100 
150 
200 
250 
300 

Succ 
BEA 

100 
100 
100 
100 
100 
100 

% 
sGA 

100 
100 
100 
100 
100 
100 

^iterations 
BEA sGA 

5.0 116.8 
27.8 625.7 
54.2 1925.3 
70.0 4576.0 
96.6 10103.6 

139.6 26549.7 

CPU time 
BEA 

295 
2,758 
8,480 

13,912 
24,584 
42,549 

(second) 
sGA 

6 
30 

116 
324 
950 

2737 

Table 2. Results for the quadratic function. 

Prob. 
Size 

50 
100 
150 
200 
250 
300 

Succ 
BEA 

100 
100 
100 
100 
100 
100 

% 
sGA 

100 
100 
0 
0 
0 
0 

^iterations 
BEA 

20.1 
48.0 
58.6 
85.1 

118.8 
134.0 

sGA 

367.2 
18833.1 

-
-
-
-

CPU time 
BEA 

1,073 
4,791 
9,229 

17,061 
30,222 
41,173 

(second) 
sGA 

27 
2,218 

-
-
-
-

Table 3. Results for the 3-deceptive function. 

Prob. 
Size 

15 
30 
45 
60 
90 
120 

Succ 
BEA 

100 
100 
100 
100 
100 
100 

% 
sGA 

30 
0 
0 
0 
0 
0 

^iterations 
BEA sGA 

3.4 49500.1 
6.3 
7.8 

10.5 
13.1 
15.7 

CPU time 
BEA 

92 
264 
494 
827 

1587 
2436 

(second) 
sGA 

2623 
-
-
-
-
-

Table 4. Results for various pop size on the one-max function with problem size 100. 

Prob. 
Size 

50 
100 
500 
1000 

Succ % 
BEA 

100 
100 
100 
100 

sGA 

0 
0 

100 
100 

#iterations 
BEA 

61.5 
59.0 
48.7 
46.7 

sGA 

-
-

1975.6 
625.7 
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one-max and quadratic functions. While more than one latent variable was used 
for 3-deceptive function. A constructive algorithm was devised to solve the for 
3-deceptive function. It starts from one latent variable, and increases the number 
of latent variables during learning. 

Tables 1-4 summarize the results. The results shown are average values over 
10 runs. The CPU time was measured on Intel Pentium II - 350 Mhz PC with 
Windows 2000. The algorithm is considered as converged if an optimal solution 
is found. The entry of the tables marked with '-' means that the algorithm did 
not find the optimal solution. The results show that the Bayesian evolutionary 
algorithms with Helmholtz machines outperform the simple genetic algorithm 
both in the success rate and the number of iterations. BEAs find the optimal 
solutions all the time while the simple GA finds solutions for easy problems such 
as one-max and small size instances of the quadratic and 3-deceptive function. 
It can be observed that from Table 4 that the BEA with Helmholtz machine 
can solve the problem using a very small data set. Even though the population 
size is 50, BEA can found the optimal solution. The improved algorithms, BEA 
with constructive Helmholtz machines could solve the 3-deceptive function very 
efficiently, significantly outperforming the simple genetic algorithm. 

The number of iterations for the sGA denotes the number of generations, 
while that for the BEA with the Helmholtz machine denotes the number of 
sampling the population, excluding the distribution estimation (learning) time. 
Therefore, it is hard to infer the CPU time from the number of iterations only. 
For comparing the real evaluation time, we measured the CPU time for BEA 
with Helmholtz machines and the simple genetic algorithm. Even if BEAs took 
more CPU time than sGAs, BEAs could solve larger size problems. It is also 
interesting that the number of evaluations for sGAs grows exponentially while 
that for BEAs grows almost linearly. 

5 Conclusions 

We presented a distribution estimation algorithm that is based on the Helmholtz 
machine. Our empirical results show that the Bayesian evolutionary optimization 
algorithms using Helmholtz machines outperform the simple genetic algorithms 
in several conditions. The superiority of the probabilistic algorithms tend to grow 
linearly as the problem complexity and size increase and solve the using very 
small data sets. Future work includes the analysis of the effect of the number of 
latent variables and the number of hidden layers in the Helmholtz machine for 
more effective estimation of population distribution. 
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