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Comprehensive protein–protein interaction maps promise to reveal many aspects of the complex regulatory network underlying
cellular function. Recently, large-scale approaches have predicted many new protein interactions in yeast. To measure their
accuracy and potential as well as to identify biases, strengths and weaknesses, we compare the methods with each other and with
a reference set of previously reported protein interactions.

F
or an increasing number of organisms, we can now list the
genes and encoded proteins1,2. It is the proteins that
execute the genetic programme, and those that are actu-
ally produced by a cell at any given time constitute its
‘proteome’3. The proteome is much more dynamic than

the genome: it changes during development and in response to
external stimuli, and the proteins form large interaction networks,
in which they regulate and support each other4–6. To fully under-
stand the cellular machinery, simply listing the proteins is not
enough—all the interactions between them need to be delineated
as well.

Traditionally, protein interactions have been studied individually
by genetic, biochemical and biophysical techniques. However, the
speed with which new proteins are being discovered or predicted has
created a need for high-throughput interaction-detection methods.
Consequently, in the last two years, methods have been introduced
that can globally tackle the problem, resulting in a vast amount of
interaction data7–14. To use these data efficiently, a critical evaluation
of their accuracy, biases, overlaps and complementarities is essen-
tial. Here, we analyse data sets from yeast two-hybrid systems7,8,
protein complex purification techniques using mass spec-
trometry10,11, correlated messenger RNA expression profiles15,16

and genetic interaction data9,17, as well as ‘in silico’ (computed)
interaction predictions derived from gene context analysis (gene
fusion18,19, gene neighbourhood14,20 and gene co-occurrences or
phylogenetic profiles21,22). We compare the methods with each
other, focusing on the yeast proteome (for details of the methods,
see Box 1). Although all of these techniques can be used for
interaction prediction, their goals are different. Yeast two-hybrid
and mass spectrometry techniques aim to detect physical binding
between proteins, whereas genetic interactions, mRNA coexpres-
sion and in silico methods seek to predict functional associations,
for example, between a transcriptional regulator and the pathway it
controls. In many cases, however, such functional associations do
take the form of physical binding20,23.

Comparing interaction data is difficult, because they are often
derived under different conditions, come in different formats (see
Box 2), and need to be benchmarked against a trusted reference set.
For this study, we chose binary interactions as the common unit of
analysis, and we relied on manually curated catalogues of known
protein complexes (Munich Information Center for Protein
Sequences, MIPS17, and the Yeast Proteome Database, YPD24) as
the trusted reference.

Overlaps and complementarities
About 80,000 interactions between yeast proteins are currently
available from the different high-throughput methods (Fig. 1)
(the exact number depends on filtering criteria). Of these, only a
surprisingly small number (,2,400) is supported by more than one
method. There are three possible explanations for this: the methods
may not have reached saturation; many of the methods may
produce a significant fraction of false positives; and some methods
may have difficulties for certain types of interactions, resulting in
complementarities between the methods.

We note, for example, that each technique produces a unique
distribution of interactions with respect to functional categories of
interacting proteins (Fig. 1). These differences in coverage suggest
that the methods have specific strengths and weaknesses. The data
sets based on purified complexes, for example, predict relatively few
interactions for proteins involved in transport and sensing (possibly
because these are enriched in transmembrane proteins, which are
more difficult to purify). Similarly, interactions detected by the
yeast two-hybrid technology largely fail to cover certain categories;
for example, proteins involved in translation are found compara-
tively less often than by other methods.

As a specific example for the complementarity between the data
sets, we considered glycine decarboxylase, which is a well-charac-
terized multi-enzyme complex needed when glycine is used as a
one-carbon source25–27. It consists of the four proteins Gcv1, Gcv2,
Gcv3 and Lpd1. This complex is not detected in the systematic
purification of complexes10 (using tandem affinity purification
(TAP)-tagged Gcv3 as a bait), presumably because it is not
expressed in yeast cells grown on rich medium. Three of the four
proteins, however, can be confidently linked to each other through
the remaining data sets, by a total of nine links involving synexpres-
sion (correlated mRNA expression) and in silico predictions (see
Supplementary Information).

A converse example is the protein PPH3, for which neither in
silico methods nor synexpression studies predict any interaction,
but which is nevertheless consistently detected in a protein complex
by mass spectrometry. PPH3 is a protein phosphatase distantly
related to PP2A; very little is known about its function or inter-
action partners28,29. In the high-throughput data, two uncharacter-
ized proteins (YBL046W and YNL201C) are invariably found with
PPH3 in four independent mass-spectrometry purifications,
thereby clearly defining a protein complex (the two are also joined
by a two-hybrid interaction).

Even data sets based on the same technique can complement each
other to some extent. The two mass-spectrometry approaches, for
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example, differ in how they express the tagged ‘baits’: the TAP
approach10 relies on genomic integration (using the endogenous
promoter), whereas the approach of high-throughput mass-spec-
trometry protein complex identification (HMS-PCI)11 employs

inducible overexpression. Both systems have their advantages: the
endogenous promoter will often maintain the stoichiometry of
interacting proteins and minimize artificial overexpression, whereas
inducible expression allows the purification of proteins that are
normally not expressed under laboratory conditions, and can be
used in species where genomic integration is not feasible, such as the
human. Of the proteins that could not be expressed in the TAP
approach, 90 were successfully purified by HMS-PCI, producing
more than 600 interactions.

Benchmarking high-throughput interactions
When assessing the quality of interaction data, coverage and
accuracy need to be considered together. A data set of high coverage
is not very useful if its accuracy is low (that is, it contains many false
positives), and vice versa. Comparing the data with a reference set of
trusted interactions allows the estimation of lower limits for
accuracy and coverage. Figure 2 summarizes how these values relate
to each other for the different data sets. Such a comparison can
provide only a very rough picture, because it is a snapshot of
ongoing efforts, because it is based on a particular framework for

Box 1 High-throughput methods for detecting protein
interactions

Yeast two-hybrid assay. Pairs of proteins to be tested for

interaction are expressed as fusion proteins (‘hybrids’) in yeast:

one protein is fused to a DNA-binding domain, the other to a

transcriptional activator domain. Any interaction between them is

detected by the formation of a functional transcription

factor7,8,41,42. Benefits: it is an in vivo technique; transient and

unstable interactions can be detected; it is independent of

endogenous protein expression; and it has fine resolution,

enabling interaction mapping within proteins. Drawbacks: only

two proteins are tested at a time (no cooperative binding); it takes

place in the nucleus, so many proteins are not in their native

compartment; and it predicts possible interactions, but is

unrelated to the physiological setting.

Mass spectrometry of purified complexes. Individual proteins

are tagged and used as ‘hooks’ to biochemically purify whole

protein complexes. These are then separated and their

components identified by mass spectrometry. Two protocols

exist: tandem affinity purification (TAP)10,43, and high-throughput

mass-spectrometric protein complex identification (HMS-

PCI)11,44. Benefits: several members of a complex can be

tagged, giving an internal check for consistency; and it detects

real complexes in physiological settings. Drawbacks: it might

miss some complexes that are not present under the given

conditions; tagging may disturb complex formation; and loosely

associated components may be washed off during purification.

Correlated mRNA expression (synexpression). mRNA levels

are systematically measured under a variety of different cellular

conditions, and genes are grouped if they show a similar

transcriptional response to these conditions. These groups are

enriched in genes encoding physically interacting proteins23.

Benefits: it is an in vivo technique, albeit an indirect one; and it has

much broader coverage of cellular conditions than other

methods. Drawbacks: it is a powerful method for discriminating

cell states or disease outcomes, but is a relatively inaccurate

predictor of direct physical interaction; and it is very sensitive to

parameter choices and clustering methods during analysis.

Genetic interactions (synthetic lethality). Two nonessential

genes that cause lethality when mutated at the same time form a

synthetic lethal interaction. Such genes are often functionally

associated and their encoded proteins may also interact

physically. This type of genetic interaction is currently being

studied in an all-versus-all approach in yeast9. Benefits: it is an in

vivo technique, albeit an indirect one; and it is amenable to

unbiased genome-wide screens.

In silico predictions through genome analysis. Whole

genomes can be screened for three types of interaction

evidence: (1) in prokaryotic genomes, interacting proteins are

often encoded by conserved operons13,14,20; (2) interacting

proteins have a tendency to be either present or absent together

from fully sequenced genomes21,22, that is, to have a similar

‘phylogenetic profile’; and (3) seemingly unrelated proteins are

sometimes found fused into one polypeptide chain. This is an

indication for a physical interaction18,19. Benefits: fast and

inexpensive in silico techniques; and coverage expands as more

genomes are sequenced. Drawbacks: it requires a framework for

assigning orthology between proteins, failing where orthology

relationships are not clear; and so far it has focused mainly on

prokaryotes.

Box 2 Counting interactions

Interaction data come in two formats: binary interactions or groups
of interacting partners, shown here for a known protein complex,

and the high-throughput data that support it (the septin complex,

not all interactions are indicated).

LPD1

ARC1

CDC3

CDC10

SHS1

CIN2

CDC12

CDC11

SPR28

TAP purification

Two-hybrid interaction

HMS-PCI purification

Annotated member
of septin complex

GIN4

For any quantitative comparison of data sets, a common unit of
analysis needs to be defined, which in this case means focusing

either on proteins or on binary interactions. It makes a difference: for
the example shown, the two-hybrid data have a false-positive rate

of 1 in 5 when counting proteins, but it is 1 in 4 when counting
interactions. Counting proteins seems more intuitive at first glance,

but it becomes complicated when comparing more than two
partially overlapping experiments. Also, counting proteins has a

lower resolution because it does not discriminate whether a protein

is involved in one or more interactions.
When focusing on interactions, data that come in groups need to

be expanded to all possible binary interactions within a group, and
can then be compared with other data sets. For example, consider

the overlap of the two mass-spectrometry approaches10,11. When
counting interactions, the overlap stands at 1,728 shared binary

interactions (which is 27.5% of the TAP interactions10 and 19.2 % of
the HMS-PCI interactions11, considering only proteins present in

both data sets). This overlap is more difficult to define when
counting proteins, and can be as high as 42% of the TAP data and

33% of the HMS-PCI data. (This depends on how one counts (see
Supplementary Information). The largest overlap between two

purifications is 18 proteins.) Importantly, the overall trend stays the
same, irrespective of the unit of analysis.
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counting and defining interactions, and because the reference set is
necessarily incomplete and may well have unknown biases itself.
Nevertheless, it is evident that there are large differences between the
methods and even within a method when parameters are changed.
As noted previously12,30, the highest accuracy is achieved for
interactions supported by more than one method (Fig. 2).

There are of course many different and valid ways to count and
compare interactions. In the HMS-PCI study11, for example, only
the interactions between the bait and the co-purified proteins were
counted, not the interactions among all the proteins in a purifi-
cation. We can confirm that this increases the accuracy (from 2 to
6.8% for HMS-PCI and from 12.5 to 27.8% for TAP), but it is
concomitant with a strong decrease in coverage (see Supplementary
Information).

An independent measure of quality is the degree to which
interacting proteins are annotated with the same functional cat-
egory (Fig. 1): for highly accurate data sets, t a intercetiTns e ndeto
gusoer on the diagonal, which shows that proteins of broadly related
functions preferentially interact with each other. This correlation
suggests that the interactions outside of the diagonal consist largely
of false positives. We note that the reference set is particularly well
clustered on the diagonal, as is the overlap of high-throughput data
(Fig. 1).

Biases in interaction coverage
None of the methods covers more than 60% of the proteins in the
yeast genome. Are there common biases as to which proteins are
covered? We identify three areas where the high-throughput inter-
action data are indeed biased. First, there is a bias towards proteins
of high abundance. There are no genome-wide measurements of
protein abundance in yeast, but mRNA levels can be used as a crude
substitute31,32. A plot of interaction coverage versus mRNA abun-

dance (Fig. 3) shows that most protein interaction data sets
(including the curated complexes) are heavily biased towards
proteins of high abundance. However, the two genetic approaches
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Figure 1 Large-scale interaction data and the distribution of interactions according to

functional categories. Each data set is represented by a matrix showing the distribution

of interactions (interaction density23) by colour. Each axis on a matrix represents the

entire yeast genome, which has been subdivided into functional categories using a

catalogue of known and predicted protein functions at MIPS17. The ‘uncharacterized’

category is not drawn to scale, because it would encompass more than a third of each

axis. Some categories were fused for conciseness, and genes annotated in multiple

categories were manually assigned to one. For the large-scale purification of protein

complexes, two data sets are shown separately (one based on the TAP system10, the

other based on HMS-PCI11), because these are the largest to date and technical details

vary considerably between them. The synthetic lethal interactions come from one initial

high-throughput screen9 (295 interactions), but also from individual screens and

experiments compiled at the MIPS database17 (note that these are derived from the

literature and might thus not be entirely independent from the reference set). For this

and subsequent figures, details on data sets, parameters and more examples are

available in the Supplementary Information.
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Figure 2 Quantitative comparison of interaction data sets. The various data sets are

benchmarked against a reference set of 10,907 trusted interactions, which are derived

from protein complexes annotated manually at MIPS17 and YPD24. Coverage and

accuracy are lower limits owing to incompleteness of the reference set. Each dot in the

graph represents an entire interaction data set, and its position specifies coverage and

accuracy (on a log–log scale). For the combined evidence, we considered only

interactions supported by an agreement of two (or three) of any of the methods shown.

For most data sets, raw and filtered data are shown, demonstrating the trade-off

between coverage and accuracy achieved by filtering (see Supplementary Information

for details on the filtering).
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(two-hybrid and synthetic lethality) appear relatively unbiased. This
is intriguing because these are the two methods that are, by design,
largely independent of endogenous protein levels. Moreover, these
two methods are especially capable of detecting transient or indirect
interactions. The observed bias in the other data sets could thus
reflect mainly experimental limitations, which would indicate that a
large body of interactions remains undiscovered for proteins of low
abundance.

Second, the data sets are biased towards particular cellular
localizations of interacting proteins (Fig. 4a), for example, towards
mitochondrial proteins in the case of the in silico predictions. As
well as identifying biases, protein localization data provide an
independent measure of quality for the different data sets, because
proteins known to interact are usually localized similarly (Fig. 4b).
Third, there is a bias in interaction coverage that relates to the degree
of evolutionary novelty of proteins. We note that proteins restricted
to yeast are less well covered than ancient, evolutionarily conserved
proteins (see Supplementary Information).

Outlook
How many protein–protein interactions can be expected in yeast? A
minimum estimate can be made by comparing the currently
annotated interactions to those high-throughput interactions that
are supported by more than one method. This overlap of high-
throughput data is around 20 times larger than would be expected
by chance (compared with randomized data sets; see Supplemen-
tary Information), which indicates a good signal-to-noise ratio.
Furthermore, it consists mainly of interactions in which both
partners have the same functional category and cellular localization
(Figs 1 and 4). Both observations suggest that the overlap consists
largely of true positives. We note, however, that less than a third of
these are annotated as previously known, indicating that there
should be at least three times as many interactions in yeast as
there are described today. Roughly 10,000 interactions are currently
known17,24, which leads to a lower estimate of 30,000 interactions in
yeast. The actual number, however, will probably be much higher
because protein expression and interaction patterns will change
during development or morphogenesis, or in response to the many

different external conditions to which yeast may be exposed in its
natural environment.

Among the interactions proposed by high-throughput methods
will be many false positives. In fact, we estimate that more than half
of all current high-throughput data are spurious. This estimate is
based on the frequent linkage of functionally unrelated proteins,
often from distinct cellular compartments, which is in contrast to
the reference set and the overlap data. (On average, only 21% of
high-throughput interactions link proteins of the same functional
category. In reality, this fraction should be higher: the overlap data
has 48% and the reference set more than 80%. A similar argument
can be made for the data concerning proteins from distinct cellular
compartments (see Fig. 4).) For a filtered yeast two-hybrid data set,
which shows medium accuracy in our benchmark (Fig. 2), the
fraction of false positives has also been predicted8,33 to be of the
order of 50%.

mRNA abundance class (10 bins of 545 genes each)

Low abundance High abundance
0

4

8

12

16

N
um

b
er

 o
f i

nt
er

ac
tio

ns
 o

rig
in

at
in

g
fr

om
 a

b
un

d
an

ce
 c

la
ss

 (×
10

3 )

HMS-PCI complexes

TAP complexes

Synthetic lethals

Yeast two-hybrid

In silico predictions

Reference set

Figure 3 A bias in interaction coverage from mRNA abundance data. Using data from a

survey of mRNA abundances in yeast32, we divided the yeast genome into ten mRNA

abundance classes (bins) of equal size. For each data set and abundance class, we

recorded the number of interactions having at least one protein in that class. Each

interaction (A–B) is counted twice: once under the abundance class of partner A, and

once under the abundance class of partner B.

Yea
st 

ge
no

m
e

Kno
wn 

int
er

ac
tio

ns

TA
P co

m
plex

es

HM
S-P

CI c
om

plex
es

Syn
th

et
ic 

let
ha

ls

Yea
st 

tw
o-

hy
brid

ER

Cytoplasm

Unknown

100%

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

Nucleus

Mitochondria

Mixed/others

Membranes

In 
sil

ico
 p

re
dict

ion
s

Syn
ex

pre
ss

ion

Kno
wn 

int
er

ac
tio

ns

Ove
rla

p o
f d

at
a s

et
s

Syn
th

et
ic 

let
ha

ls

In 
sil

ico
 p

re
dict

ion
s

Syn
ex

pre
ss

ion

HM
S-P

CI c
om

plex
es

Yea
st 

tw
o-

hy
brid

TA
P co

m
plex

es

Ran
dom

 p
air

s

a       Relative coverage of categories

b      Interactions within same category

Figure 4 Protein localization and interaction coverage. Protein localizations are derived

from the MIPS17 and TRIPLES (Transposon-insertion Phenotypes, Localization, and

Expression in Saccharomyces)40 databases. a, The distribution of protein localization

among the proteins covered by a data set (relative coverage). ER, endoplasmic

reticulum. b, The fraction of interactions in which both partners have the same protein

localization. Here, only proteins clearly assigned to a single category are considered.

analysis

NATURE | VOL 417 | 23 MAY 2002 | www.nature.com402 © 2002        Nature  Publishing Group



To increase coverage and to improve confidence in detected or
predicted protein interactions, as many complementary methods as
possible should be used, including those studied here as well as new
approaches such as protein microarrays34,35. Together with improve-
ments in current technologies, transparent quality control and
benchmarking, this will lead to a vast and expanding body of
reliable high-throughput interaction data. Exploitation of the
non-overlapping interactions will remain a challenge and will
require integrated database approaches17,36–39 as well as careful
curation and validation, as has long been good practice for indi-
vidual experiments in the laboratory. A
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