Date
(mm/dd/yy)
|
Chapter - Section |
Presenter |
12/26/06(TUE) |
1. Introduction : 1.1 ~ 1.3 |
±è±ÇÀÏ
(PPT)
|
1. Introduction : 1.4 ~ 1.6
|
ÇÏÁ¤¿ì
(PPT)
|
12/28/06(THU) |
2. Probability Distribution : 2.1 ~ 2.3.5 |
±èÁÖ°æ
(PPT)
|
2. Probability Distribution : 2.3.6 ~ 2.5
|
±è¹ÎÇõ
(PPT)
|
01/02/07(TUE)
|
3. Linear Models for Regression : 3.1 ~ 3.3 |
³ë¿µ±Õ
(PPT)
|
3. Linear Models for Regression : 3.4 ~ 3.6
|
³ë¿µ±Õ
(PPT)
|
01/04/07(THU)
|
4. Linear Models for Classification : 4.1 ~ 4.2 |
ÀÓÈñ¿õ
(PPT)
|
4. Linear Models for Classification : 4.3 ~ 4.5
|
À̽ÂÁØ
(PPT)
|
01/09/07(TUE)
|
5. Neural Networks : 5.1 ~ 5.4 |
Çã¹Î¿À
(PPT)
|
5. Neural Networks : 5.5 ~ 5.7 |
ÀåÇÏ¿µ
(PPT)
|
01/11/07(THU)
|
6. Kernel Methods |
±èÁؽÄ
(PPT)
|
|
|
01/16/07(TUE)
|
Review Ch 1~7. Q & A
|
|
7. Sparse Kernel Machines |
±è ¼±
(PPT)
|
01/18/07(THU)
|
8. Graphical Models : 8.1 ~ 8.2
|
³²Áø¿ì
(PPT)
|
8. Graphical Models : 8.3 ~ 8.4
|
±èº´Èñ
(PPT)
|
01/23/07(TUE)
|
9. Mixture Models and EM
|
¼®È£½Ä
(PPT)
|
10. Approaximate Inference : 10.1 ~ 10.3
|
±èº´Èñ
(PPT)
|
01/25/07(THU)
|
10. Approaximate Inference : 10.4 ~ 10.7
|
³ë¿µ±Õ
(PPT)
|
11. Sampling Methods
|
ÀÌÀÎÈñ
(PPT)
|
01/30/07(TUE)
|
12. Continuous Latent Variables : 12.1 ~ 12.2 |
±è¼öÁø
(PPT)
|
12. Continuous Latent Variables : 12.3 ~ 12.4 |
ÀÌÁ¦±Ù
(PPT)
|
02/06/07(TUE)
|
13. Sequential Data : 13.1 ~ 13.2
|
±èÁø¿µ
(PPT)
|
13. Sequential Data : 13.3
|
±¸º»¿õ
(PPT)
|
02/08/07(THU)
|
14. Combining Models |
¾öÀçÈ«
(PPT)
|
Review Ch 8~14. Q & A. Ã¥ °Å ¸®
|
|