The Dynamical Systems Model of the Simple Genetic Algorithm

7. Crossover and the Mixing-Matrix

- The *effects of crossover* in terms of an operator C acting upon Λ .
 - ·Given a population $p \in \Lambda$, $(Cp)_k$ will give the probability of individual z_k being in the next population.

$$G = C \circ U \circ F$$

- For all the usual kinds of crossover, the order of crossover and mutation doesn't matter.
 - · combination of mutation and crossover gives mixing scheme for the GA

$$\cdot M = C \circ U = U \circ C$$
.

$$\cdot G = M \circ F$$

- Some *properties of crossover operator C*
 - $\omega(p,q) \in \Lambda$: population distribution resulting from crossing over random parents from distributions p and q.
 - $\omega(p,q)_k = \sum_{i,j} p_i q_j \omega(e_i,e_j)_k$: probability that crossing z_i and z_j will produce z_k .
 - · ω is an bilinear operator

$$C(p) = \omega(p, p) = \sum_{i,j} p_i p_j \omega(e_i, e_j)$$

$$C(\alpha p) = \omega(\alpha p, \alpha p) = \alpha \omega(p, \alpha p) = \alpha^2 \omega(p, p) = \alpha^2 C(p)$$

$$G(p) = (M \circ F)(p) = (C \circ U \circ F)(p)$$

$$= C(\frac{1}{\bar{f}(p)}USp) = \frac{1}{(\bar{f}(p))^2}C(USp) = \frac{1}{(\bar{f}(p))^2}M(Sp)$$

 \cdot *C* can be defined using *s* matrices, one for each individual z_k .

$$C(p)_k = \sum_i p_i \sum_j \omega(e_i, e_j)_k p_j = p \cdot (C_k p)$$

· Utilizing the symmetry of crossover action, C can be written in terms of the matrix $\,C_0\,$ and a set of permutation matrices $\,\sigma_k\,$

$$C(p)_k = (\sigma_k p) \cdot C_0(\sigma_k p) = \sigma_k^T C_0 \sigma_k \text{ where } \sigma_k = \begin{cases} 1 \text{ if } z_i \oplus z_k = z_j \\ 0 \text{ otherwize} \end{cases}$$

- The mixing scheme

$$M(p)_{k} = C(Up)_{k} = (Up) \cdot (C_{k}Up) = p \cdot (UC_{k}Up)$$
$$= p \cdot (U\sigma_{k}^{T}C_{0}\sigma_{k}Up) = (\sigma_{k}p) \cdot (UC_{0}U\sigma_{k}p) = (\sigma_{k}p) \cdot (M_{0}\sigma_{k}p)$$

where
$$M_k = UC_kU$$
.

8. Mixing and the Walsh Transform

- The Walsh transform

$$W_{i,j} = \frac{1}{\sqrt{s}} (-1)^{z_i \cdot z_j}$$
 for $i, j = 0, \dots, (s-1)$.

- gives us an efficient way to calculate the effects of the operator M.
- to calculate G(p), we need to calculate the Walsh transform of M(p), which can be calculated easily using Walsh transform of F(p)
- · if initial population is chosen uniformly at random from the search space, Walsh transform of F(p) is consisted of fitnesses of each individual.

9. Properties and Conjectures Concerning G

- Principle conjecture
 - · *G* is focused under assumptions about crossover and mutation.
 - ·Given any population vector, the sequence p, Gp, G^2p, \cdots converges
 - · Assumptions:
 - * Bitwise mutation with a mutation rate < 0.5 and no crossover.
 - * Linear fitness function and small mutation rate, when there is crossover.
- Second conjecture
 - · Fixed-points of *G* will be *hyperbolic* for nearly all fitness functions.
 - \cdot A fixed-point is said to be hyperbolic if the differential of G at the point has no eigenvalue with modulus equal to 1.
 - \cdot True for fixed-length binary strings, proportionate selection, any kind of crossover, and mutation defined bitwise with a positive mutation rate.
- Properties of *G* from above conjectures
 - ·There are only finitely many fixed-points of *G*.
 - · The probability of picking a population p, s.t. iterates of G applied to p converge on an unstable fixed-point, is zero.
 - · The infinite population GA converges to a fixed-point in logarithmic time.