Effective EEG Connectivity Analysis of Episodic Memory Retrieval

Chung-Yeon Lee & Byoung-Tak Zhang

Biointelligence Lab
Seoul National University

July 25, 2014

The 36th Annual Meeting of the Cognitive Science Society
Quebec, Canada
Talk Outline

- Background
- Research Goals
- Methods
- Experimental Results
- Conclusion & Discussion
• **Functional Segregation:**
 Different areas of the brain are specialized for different functions

• **Functional Integration:**
 Networks of interactions among specialized areas \(\rightarrow \) Connectivity

※ Hanneke den Ouden 2009, *SPM Course at Zurich*
Research Goals

- To study the information flows of the human brain network
 - During episodic memory retrieval
 - Partial and direct information within the human brain
- Based on effective connectivity measured from EEG
 - Source localization technique for estimating the activity of the neuronal sources
 - The strength and spectro-anatomical patterns of the inter-areal interactions
 - Direct directed transfer function
 - Time-varying multivariate autoregressive model
- Graph theoretical analysis
 - Topological interactions across the brain regions
Methods

- **Behavioral Task**
 - The episodic memory retrieval game after watching a video
 - Participants decide whether the order of the two presented images are correct or incorrect.

- **EEG Acquisition**
 - EEG signals were sampled at 1000 Hz using an EEG cap equipped with 128 electrodes
 - Timestamp of all sessions are automatically recorded by the game program
Methods

- **Source Localization**
 - Fitting dual symmetric equivalent dipole model to each source signal ($N = 62$)
 - Using DIPFIT2 in EEGLAB with a four-shell spherical head model
Methods

- **Direct directed transfer function (dDTF)**
 - A measure based on the transfer function matrix between channels.
 - Transfer function matrix: an SVD of the cross-spectral density matrix
 - A combination of partial coherence and directed transfer function (DTF)

 - DTF
 \[\gamma_{ij}^2(f) = \frac{|Y_{ij}(f)|^2}{\sum_{n=1}^{k}|Y_{in}(f)|^2} \]
 - ffDTF
 \[\eta_{ij}^2(f) = \frac{|Y_{ij}(f)|^2}{\sum_{f} \sum_{n=1}^{k}|Y_{in}(f)|^2} \]
 - Power spectrum
 \[S(f) = Y(f)VV^*(f), \]
 - Partial coherence
 \[\chi_{ij}^2(f) = \frac{R_{ij}^2(f)}{R_{ii}(f)R_{jj}(f)}, \]
 - dDTF
 \[\delta_{ij}(f) = \chi_{ij}(f) \eta_{ij}(f) \]

- Time-varying dDTF can be obtained by using a sliding-window MVAR model
 - Window length: 500 ms, Step size: 10 ms
 - 251 windows (0-500, 10-510, …, 2500-3000 ms)
Experimental Results

Fixation (threshold = 5e-04)

Frequency = 8 Hz; Time = 300 ms

Retrieval (threshold = 5e-04)

Fixation (threshold = 1e-05)

Retrieval (threshold = 1e-05)

(Color of edges are exaggerated for better visualization)
Experimental Results

- **Mean dDTF Network Graph** (threshold = 5e-4)

 - Fixation
 - Frequency = 8 Hz; Time = 300 ms
 - Retrieval
Experimental Results

- **Active Brain Regions during Retrieval Tasks** *(Retrieval – Fixation)*

 - PFC: Prefrontal cortex
 - HYP: Hypothalamus
 - PVC: Primary visual cortex
 - IFG: Inferior frontal gyrus
 - THA: Thalamus
 - MTL: Medial temporal lobes
 - MFG: Middle frontal gyrus
 - SFG: Superior frontal gyrus
 - PCN: Precuneus
 - IPL: Inferior parietal lobes
Experimental Results

- **Example of the Increased Information Flow**
 - Information flow from MFG to MTL in retrieval task is higher than in fixation
 - Oscillatory powers of MFG in retrieval task is also increased but has no direction
 - Which frequency and time bands are significant?
Experimental Results

- **Significant Time-Frequency Zone**
 - Significantly different dDTF between fixation and retrieval tasks
 - Two-sample *t*-test → *p* < 0.05
 - Time band: 0 ~ 1000 ms
 - Frequency band: 2-30 Hz
 - Differences around 1500 ms were not considered
 - Too delayed from the onset of stimuli
 - Irrelative facts
Experimental Results

- **Information Flows are Increased in Active Brain Regions**
 - Statistically meaningful increases in most of the 90 pairs during retrieval tasks
 - $P_{t-test} < 0.05$ (76 pairs in 4 Hz and 80 pairs in 8 Hz)
Experimental Results

- **Networks of the Effective Connectivity Shows:**
 - Topological interactions across the brain regions
 - **Fixation:** sparse local networks in the frontal and occipital-medial temporal area
 - **Retrieval:** densely interconnected network
 - Asymmetrical features
 - PVC-temporal/occipital regions vs PVC-frontal regions
 - PCN→SFG vs PCN←SFG
 - **Hub node:** SFG (globally connected with overall brain regions)
Conclusion & Discussion

- **Information flows during episodic memory retrieval**
 - Between frontal cortex, medial temporal, parietal and occipital lobes
 - Globally interconnected effective connectivity network
 - Across 2~30 Hz frequency band and 0~1000 ms time band

- **Graph theoretical analysis**
 - SFG acted as a hub in the network during memory retrieval
 - SFG is a key component of the neural network of memory process
 - **Participation of SFG is triggered by the highest level of executive processing** (Boisgueneuc et al., 2006)

- **Asymmetric information flows between brain regions**
 - PVC-temporal/occipital regions vs PVC-frontal regions
 - PCN→SFG: non-retrieval; PCN←SFG: retrieval
 - **The dual process model of attention to memory** (Cabeza, 2008)
THANK YOU!